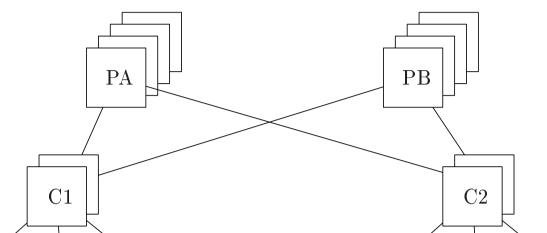
Bounding transient and steady-state dependability measures through algorithmic stochastic comparison Ana Bušić and Jean-Michel Fourneau

PRiSM, University of Versailles

Highly available multicomponent systems

• Huge state space (> 10^{10} states) \rightarrow excludes the generation of the whole state space • Most of the probability mass located in a small portion of the state space

 \rightarrow bounding techniques.



Repairable system studied by Muntz et al. 1989, Carrasco 1999.

State space is divided into UP (system

Avoiding generation of the whole state space

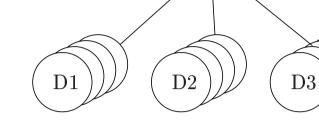
To apply LMSUB algorithm: the transition matrix must be stored on disk (may be difficult).

If impossible \rightarrow **LL (Lumpable and Larger) algorithm**

• Using a high level formalism designs a lumpable matrix A such that $P \leq_{st} A$. • Generates and stores the lumped version (*B*) of *A*

- *B* (not necessarily \leq_{st} -monotone) \rightarrow input for LMSUB.
- May depend on the high level formalism used for model specifications.

The bound obtained by LMSUB on *B* is also a bound of the original matrix we are not able to store.



is operational) and DOWN states.

Figure 1.

D4)

Goal: to compute bounds for both **transient** (new) and **steady-state** dependability measures such as reliability, point and steady-state availability.

Uniformization \rightarrow *discrete time Markov chain (DTMC) bounding problem.*

 D_5

Method: algorithmic construction of a numerically tractable model that can be stochastically compared with the original one.

Algorithmic stochastic comparison approach

Strong stochastic order (\leq_{st}): *X* and *Y* two random variables.

 $X \preceq_{st} Y$ if $E[f(X)] \leq E[f(Y)], \forall f$ non decreasing function.

Comparison of two DTMC's *X* and *Y* (with transition matrices *P* and *Q*): If $X(0) \preceq_{st} Y(0)$, $P \preceq_{st} Q$ (i.e. $P_{i,*} \preceq_{st} Q_{i,*} \forall i$) and P or $Q \preceq_{st}$ -monotone, then

 $X(k) \preceq_{st} Y(k), \forall k \quad (\text{if } X \text{ and } Y \text{ ergodic}, \ \pi_X \preceq_{st} \pi_Y).$

Can be used to compare increasing rewards of two DTMC's. Additionally, Q will be forced to be ordinary lumpable \rightarrow state-space size reduction.

Numerical example

System in Figure 1 with model description and parameter values as in *Carrasco* 1999:

• Failures and reparations of components are exponentially distributed.

• Only one processor of each type is active and only the active processor can fail. A failure of PA may contaminate the active PB.

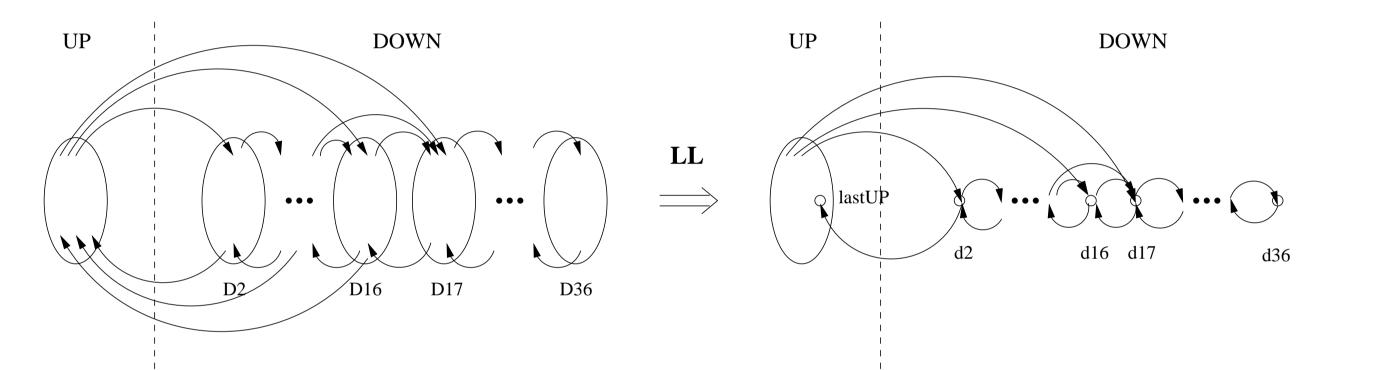
- Two failure modes (soft and hard) and one repairman.
- UP states: at least one processor unit (PA or PB), one controller of each set (C1 and C2) and three disks of each cluster (D1 and . . . and D6) are operational.

Only 36 components of 10 types yet the state-space is of order of $9.0 \ 10^{10}$.

Availability bounds

LL step:

DOWN states with the same total number of faults are aggregated (all UP states are generated concentration of the probability mass) $\Rightarrow 1\ 312\ 235$ states.



Construction of an \leq_{st} **monotone lumpable upper bounding chain** for a finite **DTMC** *X* (with transition matrix *P*)

$$\sum_{k=j}^{n} P_{i,k} \leq \sum_{k=j}^{n} Q_{i,k}, \ \forall i,j \quad \text{(transition matrix comparison)}$$
$$\sum_{k=j}^{n} Q_{i-1,k} \leq \sum_{k=j}^{n} Q_{i,k}, \ \forall j, \ \forall i \geq 2 \quad \text{(monotonicity)}$$

For a given partition $C_l, l \in L$ of the state space, $\forall i \in L, \forall a, b \in C_i$,

$$\sum_{k\in C_j}^n Q_{a,k} = \sum_{k\in C_j}^n Q_{b,k}, \ \forall j\in L$$
 (lumpability)

LIMSUB algorithm, Fourneau et al. 2003: additional irreducibility constraints \rightarrow steady-state bounds.

Bounding transient rewards

LMSUB (Lumpable Monotone Stochastic Upper Bound) algorithm

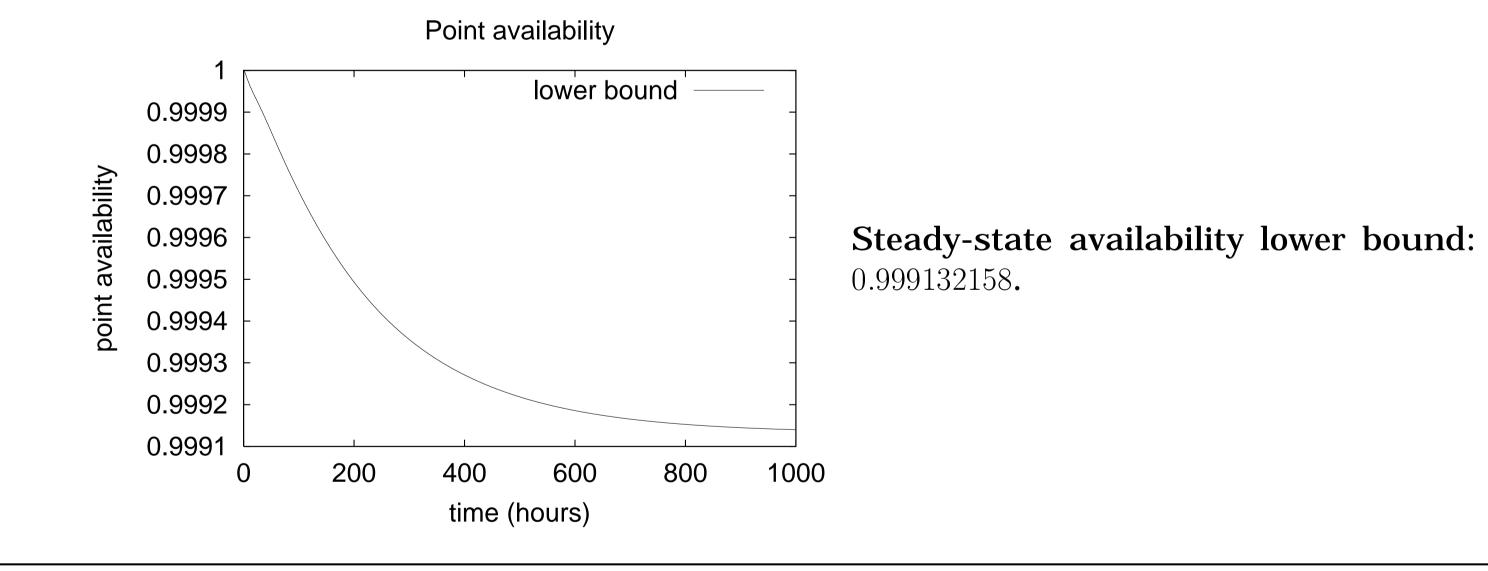
• Inspired by transient analysis: no irreducibility constraints

- \Rightarrow can be used to compute bounds even of reducible matrices.
- Simpler: based only on transition matrix comparison, monotonicity and lumpability.
- Can be used also for steady-state bounds (the bounding chain has only one recurrent class).

LMSUB step:

UP states (except $last_{UP}$) are ordered (increasingly) and regrouped by number of failed components followed by number of hard failures; followed by $last_{UP}$ state, then by 35 aggregated DOWN states. $\Rightarrow 172$ subsets.

eliability

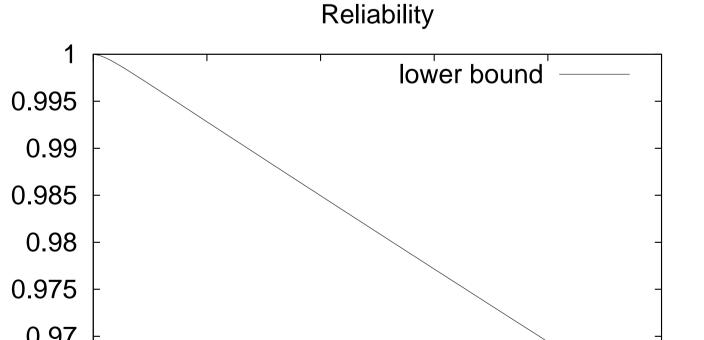


Reliability bounds

Analysis of chain with all the DOWN states aggregated into one absorbing state.

LMSUB step:

Aggregation by number of failed com-



for $b = m$ downto 1 do for $j = last(b)$ downto $first(b)$ do for $i = 1$ to n do $sumq_{i,j} = max(sumq_{i-1,j}, \sum_{k=j}^{n} p_{i,k});$ if $b < m$ and $j = last(b)$ and $i = 1$ then $sumq_{i,j} = max(r_{block(i),b+1}, sumq_{i,j});$	 - P, Q and R - the initial, lumpable and lumped matrix. - Partition into m macro states. - first(l) and last(l) - the first and the 	ponents followed by number of hard failures \rightarrow 137 blocks (1 DOWN).	0.97 0.965 0.96 0	200	400 time (ł	600 nours)	800	1000
 end end for a = 1 to m do r_{a,b} = sumq_{last(a),first(b)}; end Implementation: Sparse representation of P and Q. Only R is actually computed and stored. Only three vectors in memory. 	last state of a macro state. - $sumq_{i,j} = \sum_{k=j}^{n} q_{i,k}$ with $sumq_{-1,j} = 0$.	 References 1. Busic A., Fourneau JM.: Bounds for Point and Steady-State Avordering. In: EPEW 2005, Springer LNCS, V 3670 (2005), 94–1 2. Carrasco J.A.: Bounding steady-state availability models with grave 35 (1999), 193–204 3. Fourneau JM., Lecoz M., Quessette F.: Algorithms for an irred Applications, V 386 (2004) 167–185 4. Muntz R., de Souza e Silva E., Goyal A.: Bounding availability (1989), 1714–1723 5. Stoyan D.: Comparison Methods for Queues and Other Stochast 	08 Froup repair and phase ducible and lumpable of repairable comput	e type repai strong stoc ter systems	r distribut hastic bou . IEEE Tra	ions, Perfo and. In: Li	ormance E near Algeb omputers,	valuation, ora and its

Laboratoire PRiSM - Université de Versailles St-Quentin - 45 Avenue des Etats-Unis - 78035 Versailles Cedex Email: {abusic,jmf}@prism.uvsq.fr

