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Highly available multicomponent systems

�Huge state space (� ���� states) � excludes the generation of the whole state space

�Most of the probability mass located in a small portion of the state space

� bounding techniques.
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Figure 1.

Repairable system studied by
Muntz et al. 1989, Carrasco 1999.

State space is divided into UP (system
is operational) and DOWN states.

Goal: to compute bounds for both transient (new) and steady-state dependability measures
such as reliability, point and steady-state availability.

Uniformization � discrete time Markov chain (DTMC) bounding problem.

Method: algorithmic construction of a numerically tractable model that can be stochastically
compared with the original one.

Algorithmic stochastic comparison approach

Strong stochastic order (���): � and � two random variables.

� ��� � if ��� ���� � ��� �� ��� �� non decreasing function�

Comparison of two DTMC’s � and � (with transition matrices � and �):
If ���� ��� � ���, � ��� � (i.e. ���� ��� ���� �	) and � or � ���-monotone, then
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Can be used to compare increasing rewards of two DTMC’s.

Additionally, � will be forced to be ordinary lumpable � state-space size reduction.

Construction of an ��� monotone lumpable upper bounding chain for a finite
DTMC � (with transition matrix � )

��

���

���� �

��

���

����� �	� � (transition matrix comparison)

��

���

������ �

��

���

����� ��� �	 � � (monotonicity)

For a given partition 	� � � � of the state space, �	 � ����� � � ��
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����� �� � � (lumpability)

LIMSUB algorithm, Fourneau et al. 2003: additional irreducibility constraints
� steady-state bounds.

Bounding transient rewards

LMSUB (Lumpable Monotone Stochastic Upper Bound) algorithm

� Inspired by transient analysis: no irreducibility constraints
� can be used to compute bounds even of reducible matrices.

� Simpler: based only on transition matrix comparison, monotonicity and lumpability.

�Can be used also for steady-state bounds (the bounding chain has only one recurrent class).
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- � , � and � - the initial, lumpable
and lumped matrix.

- Partition into � macro states.

- �	������ and ������� - the first and the
last state of a macro state.

- ������� �
��

��� ���� with �������� � �.

Implementation:

� Sparse representation of � and �.

�Only � is actually computed and stored.

�Only three vectors in memory.

Avoiding generation of the whole state space

To apply LMSUB algorithm: the transition matrix must be stored on disk (may be difficult).

If impossible � LL (Lumpable and Larger) algorithm

�Using a high level formalism designs a lumpable matrix � such that � ��� �.

�Generates and stores the lumped version (�) of �
� (not necessarily ���-monotone) � input for LMSUB.

�May depend on the high level formalism used for model specifications.

The bound obtained by LMSUB on � is also a bound of the original matrix we are not able to
store.

Numerical example

System in Figure 1 with model description and parameter values as in Carrasco 1999:

� Failures and reparations of components are exponentially distributed.

�Only one processor of each type is active and only the active processor can fail. A failure of PA
may contaminate the active PB.

� Two failure modes (soft and hard) and one repairman.

�UP states: at least one processor unit (PA or PB), one controller of each set (C1 and C2) and
three disks of each cluster (D1 and . . . and D6) are operational.

Only �	 components of �� types yet the state-space is of order of 
�� ����.

Availability bounds
LL step:

DOWN states with the same total number of faults are aggregated (all UP states are generated -
concentration of the probability mass) � � ��� ��� states.
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LMSUB step:

UP states (except ����� ) are ordered (increasingly) and regrouped by number of failed compo-
nents followed by number of hard failures;followed by ����� state, then by �� aggregated DOWN
states. � ��� subsets.
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Reliability bounds
Analysis of chain with all the DOWN
states aggregated into one absorbing
state.

LMSUB step:
Aggregation by number of failed com-
ponents followed by number of hard
failures
� ��� blocks (� DOWN). 0.96
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