Web Services Security and Federated Identity Management

Birgit Pfitzmann
with Th. Gross, A.-S. Sadeghi, M. Waidner
IBM Security and Privacy Research -- Goals

- The right security and privacy in all of IBM’s products (systems, software, services, solutions)
- Innovative security and privacy products
- Innovative security and privacy solutions for specific customer problems
- Leading research in security and privacy
- Interface with the academic research community

World wide ~150 researchers
IBM Security and Privacy Research -- Topics

- **Watson**
 - Biometrics
 - Cryptography
 - Ethical Hacking
 - Intrusion Defense
 - Language Sec
 - OS/Linux Security
 - Privacy
 - Secure HW
 - Web Services
 - Wireless Security

- **Zurich**
 - Cryptography
 - Dependability
 - Identity Mgmt
 - Intrusion Defense
 - JavaCard
 - Privacy Mgmt
 - ODIS
 - Risk&Compliance
 - Storage Security
 - Web Services

- **Almaden**
 - Rights Mgmt
 - Privacy

- **Austin**

- **Haifa**
 - Web Services
 - Crypto Hardware
 - ODIS

- **Beijing**

- **Tokyo**
 - Web Services
 - Crypto Hardware
 - ODIS

- **Zurich**
 - Storage Security
 - Web Services
Identities: The Big Picture

- Roles
- Collection, recognition
 - Allowed?
 - Efficient?
 - Verified?
- Exchange
 - Possible?
 - Allowed?
 - Efficient?
Content

- The big picture
- Security
- Privacy
- Summary
Identity in an Enterprise

Access channels

Front end
Portal, integration
Applications, DBs

LOB silos

IT tiers
Integration Aspects and Privacy

- Single sign-on
- Directory Integration & Delegation
- Provisioning
- Federation
- Security

IBM Zurich Research Lab
Drivers for Transforming Identity Infrastructure

Business

- **Efficiency**
 - Consistent customer contacts

- **Compliance**
 - Privacy
 - Auditing, controls
 - Know-your-customer

- **Federation**
 - More flexible enterprise relationships

IT

- **Efficiency**
 - Password helpdesks
 - Consistent access rights
 - De-provisioning

- **Federation**
 - Easier updates in existing enterprise relationships
Federated Identity Management

Federated single sign-on

Federated provisioning

• Value-chain partner
• Health insurer
• Travel agent
• ...
What’s New?

Scientifically
Standards
Management

Federated single sign-on

Nothing.
(Event-based directory integration)

XML-based.
(DSML, SPML, WS-Provisioning)

More liability and privacy issues

Pure browser case.
(Else 3-party authentication)

• Also WS versions
• Also more attributes

• More liability and privacy issues
• Metadata exchange
Integrating Federated SSO

- Federated
- Or policies for locally unknown users

Front end
Portal, integration
Applications, DBs

FIM add-on
SAML
WSFed
...
Security
SAML Artifact Profile

0. Browse, redirect

1a. Authenticate user

2. Redirect to D & *artifact*

3. GET ... & *artifact*

4. SAML Request w/ *artifact*

5. SAML Response: *assertion*

6. Result page
A Multi-Layer Vulnerability in SAML Artifact Profile

1a. Authenticate user
2. Redirect to D & artifact
3. GET ... & artifact

6. Error page with non-SSL link

7a. GET non-SSL page

Interrupts channel D↛S
Gets artifact
Impersonates U at D

HTTP Referer: URL w/ artifact

http://www.zurich.ibm.com/security/identities/#Gros1_03
State of the Art

- Korman/Rubin 00: Passport problems
- Pfitzmann/Waidner 02 etc.: Privacy
- Pfitzmann/Waidner 02, Gross 03: Liberty and SAML problems
- Gordon et al 02-05: WS protocols, but not FIM
- Gross/Pfitzmann 04: Positive analysis of WSFPI based on “top-down” browser assumptions
- Gross/Pfitzmann/Sadeghi 05: Detailed browser and user model, reproving “bottom-up”
Our Goal

- Rigorous security statements of browser-based FIM protocols (mathematical proof)

Challenges for proving:

- Browsers and users
 - Browser as protocol party
 - Predefined protocol-unaware behavior
 - Restricted abilities
 - User also a protocol party – zero-footprint browser contains no identity
 - Browser and user might leak “protocol-internal” secrets
- Modularity, e.g., use of secure channels and SAML tokens
- Standard-style presentations
 - We prove rigorous instantiations
What Can We Hope to Prove?

- **Vulnerable operational environment**
 - Based on passwords
 - Fake-screen attacks easy
 - Browser security assumed
 - OS security assumed
- **Identity supplier can impersonate user**

We prove secure channel establishment under appropriate operational assumptions
Big Picture: Proofs with Browser Model

Claim: Secure channels again
Part of the User Model for this Authentication

- Behavior of U upon authentication request (critical part to prevent phishing)

\[
\text{gui}_{B,U}(\text{request_uauth, wid, host, sid, ch_type})
\]

Waiting \rightarrow Authentication request

[∃ P ∈ T_U | P.host = host ∧ P.sid = sid ∧ P.login ≠ ε] ELSE

Known trusted server

ELSE

[\text{ch_type} ∈ P.sec] // gui_{U,B}(\text{authenticate, wid, P.login, P.sid, false})

Failure: unknown server / channel insecure

Proceed: uauth successful
Crucial Aspects of the Browser Model

- Channel handling and main HTTP transactions
- User interaction
- Redirect and POSTform for 3-party protocols
- Leakage function, in particular Referer Tag
- Storage and loss of passwords, history, cache

- Proofs need assumptions that unmodeled information leakage really does not occur
 - Usable as future reference for what browsers should NOT do for use in browser-based protocols
Second half of B’s state diagram for 1 HTTP transaction
The WSFPI Protocol – Basis for a Proof

WSFPI ≈ Interop Profile

WS-Fed Passive WS-Fed Active

WS-Federation

Other WS-Sec* HTTPS Tokens
Privacy
Privacy Overview

Attributes about a person P are only given to an organization O, used there, or forwarded with P's consent.

- “Standard” implication
 Explicit privacy policy for attributes (exceptions by law)

- Special cases:
 - Attribute = ID ⇒ Multiple roles / pseudonyms
 - Attribute = URL ⇒ Browsing behavior privacy
 - O = identity supplier ⇒ Allow multiple suppliers, in particular local supplying

- Standards and middleware should allow maximum privacy, deployments should ensure appropriate privacy
Privacy Limits of “Normal” Federated Identity Management

- Privacy can get quite good, except
 - Not certified (role) attributes with anonymity
 - Identity supplier learns destination site trail (for redirections)
idemix – Anonymous Role-based Access

Master ID: Alice

I’m Alice
Alice is born 1975
Zero-knowledge proof

802’918 owns
• cert of birth < 1990

http://www.zurich.ibm.com/security/idemix
Used by TCG TPM 1.2, EU PRIME
Scheduled applications of idemix

- Direct Anonymous Attestation
 Trusted Computing Group TCG
 TPM 1.2 Specification

- EU IST Prime, “Privacy and Identity Management for Europe”
 Base technology
Summary
Summary and Outlook

- Identity management is major issue
 - Drivers: compliance, efficiency, and federation (web-based or web services)
- Browser-based FIM protocols are at least as error-prone as other security protocols
- Protocol-unawareness as major new challenge
- Addressed by detailed browser and user model; proofs now possible
- Privacy can be quite good, but needs care in protocol design and deployment
 - Fat-client cryptographic FIM can go one step further
For more information …

- **How to reach me**
 Birgit Pfitzmann <bpf@zurich.ibm.com>

- **IBM Research**
 IBM Zurich Research Lab:
 Federated Identities at IBM Zurich Research Lab:
 Security research at IBM Zurich: