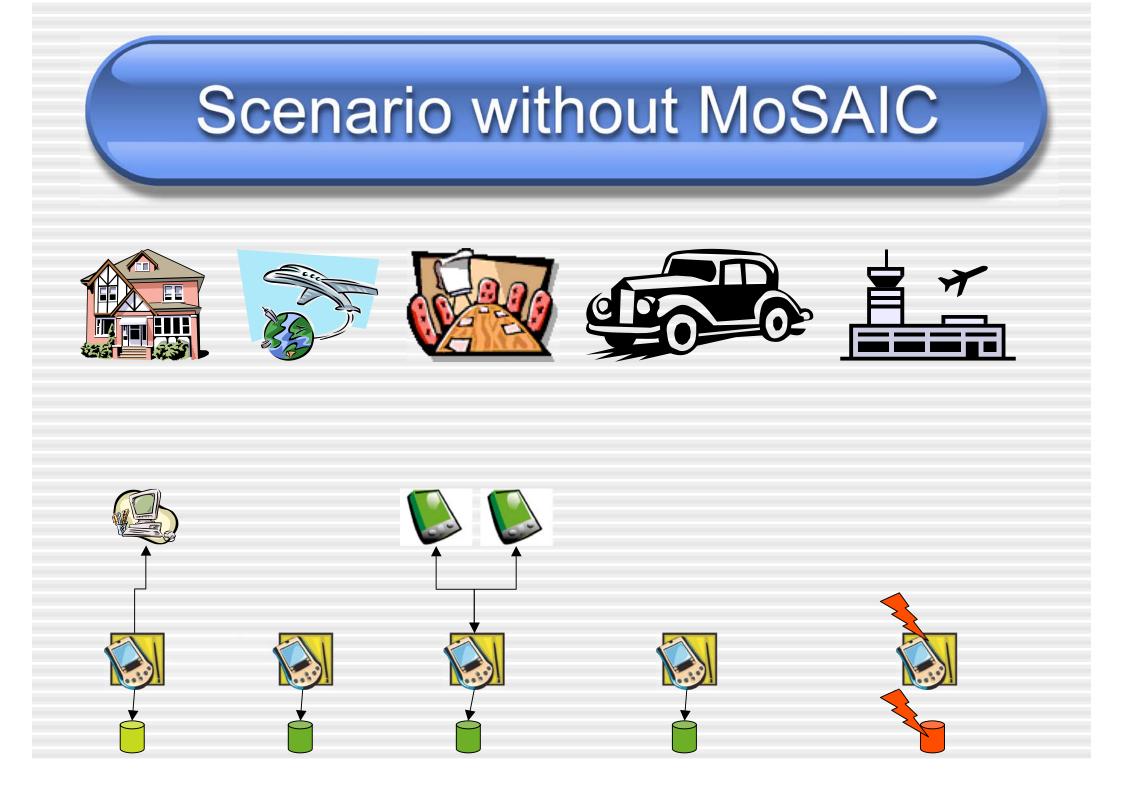
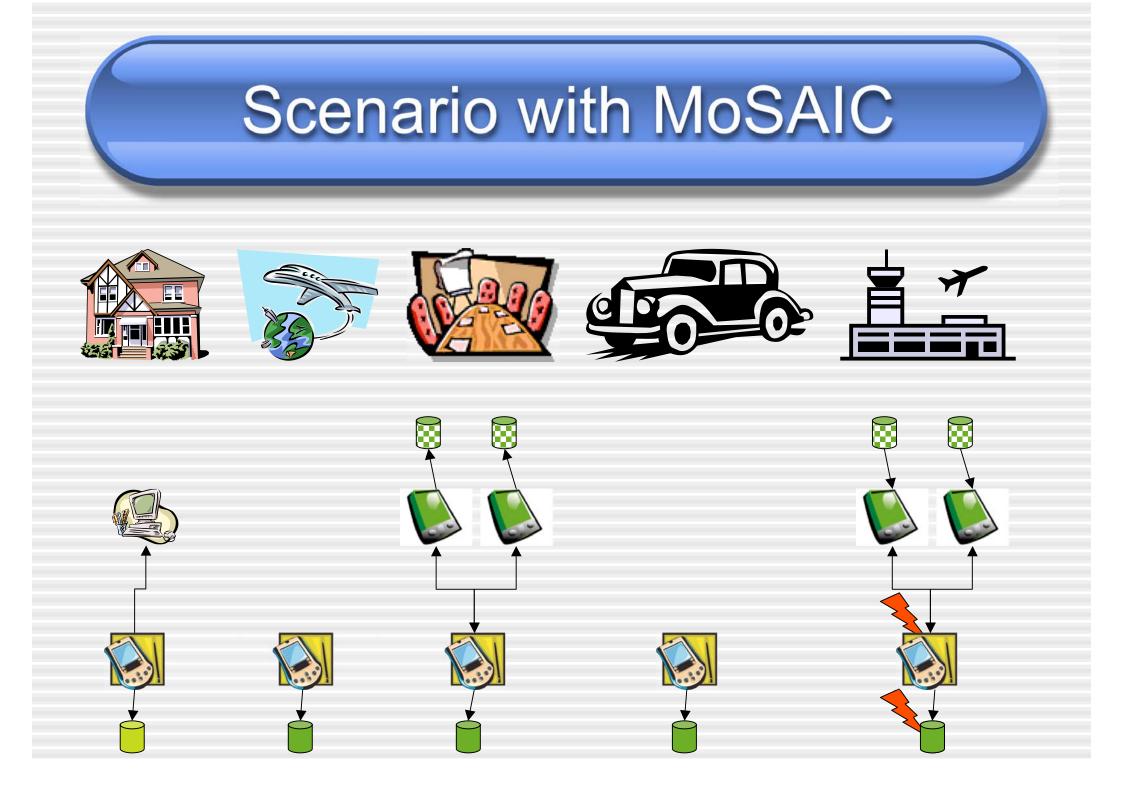

MoSAIC

Mobile System Availability Integrity & Confidentiality





- 3 years
- 3 partners
- Funded by French Ministry of Research
- Started
 September
 2004



- Aim: investigate new distributed algorithms and mechanisms for the tolerance of:
 - Accidental faults
 - Malicious faults
- Nomadic device scenario
 - Mostly disconnected operations
 - Opportunistic wireless communication with similar devices
 - Peer-to-peer model of interactions
- Participants are both:
 - Data owners (clients of backup service)
 - Contributors (providers of backup service)
- Backup = protection of critical private data against:
 - Permanent and transient faults affecting a data owner
 - Theft or loss of a data owner

Intermittent access to infrastructure

- Backup = protection of critical private data against
 - Permanent and transient faults affecting a data owner
 - Theft or loss of a data owner

- Backup = protection of critical private data against
 - Permanent and transient faults affecting a data owner
 - Theft or loss of a data owner
- New threats on backups
 - Malicious (and accidental) faults affecting availability of data backups
 - Malicious (and accidental) modification of data backups
 - Malicious read access to data backups
- New threats on service
 - Selfish denial of service (refusal to cooperate)
 - Free-riding : consumption without contribution
 - "Tragedy of the commons" (Hardin 1968)
 - Attacks must be made unprofitable
 - Malicious denial of service (sabotage)
 - Attacks must be made ineffective or too costly

Challenges

- No prior organization
- Ephemeral interactions
- Limited energy, computation and storage
- Only intermittent access to a fixed infrastructure
- + Usual criteria for classic functionalities
 - User transparency
 - Usability
 - etc.
- M.-O. Killijian, D. Powell, M. Banâtre, P. Couderc and Y. Roudier, "Collaborative Backup for Dependable Mobile Applications [Extended Abstract]", in *2nd Workshop on Middleware for Pervasive and Ad-Hoc Computing. Middleware 2004 Companion*, (Toronto, Canada), pp.146-49, ACM Press, 2004.

P2P Storage Systems

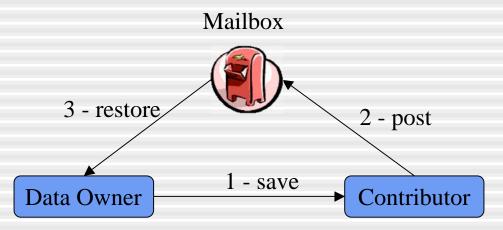
WAN peer-to-peer systems

- - GNUnet
 - FreeNet
 - OceanStore
- Backup >> Cooperation incentives, trust
 - Elnikety et al.
 - Pastiche
 - PeerStore
 - pStore
- PAN peer-to-peer systems
 - Backup
 - Flashback

Storage space discovery and allocation Data chunk distribution • Each participant DHT chooses a set of • Data ID \rightarrow Node ID partners • Data homogene-• When a backup is ously distributed \rightarrow Specific groups All participants required, chunks are storage commitment sent to the set independent of write utilization [▶]variants **Hybrids** • Data chunks on subsets • All the data vs. modified data • Metadata • Selection of set of partners: (IDs/participants, etc.) proximity, stability, etc. stored using DHTs

WAN P2P backup vs MoSAIC

Similar problems, but solutions not transferable to nomadic device scenario...

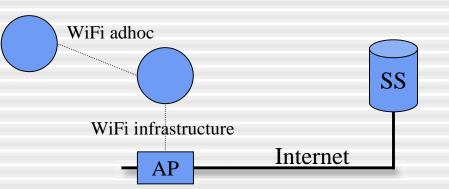

Connections & bandwidth	Stable	Unstable
Dynamics	Low (fixed)	High (mobility)
Resource discovery	Know somebody	Dynamic
Access to fixed infrastructure & TTPs	Continuous	Intermittent trust mechanisms for disconnected operation

- ...except content-based addressing & convergent ciphering?
 - Use hash of content as an address
 - Allows backup optimization by exploiting inter-file redundancy (in addition to compression to exploit intra-file redundancy)

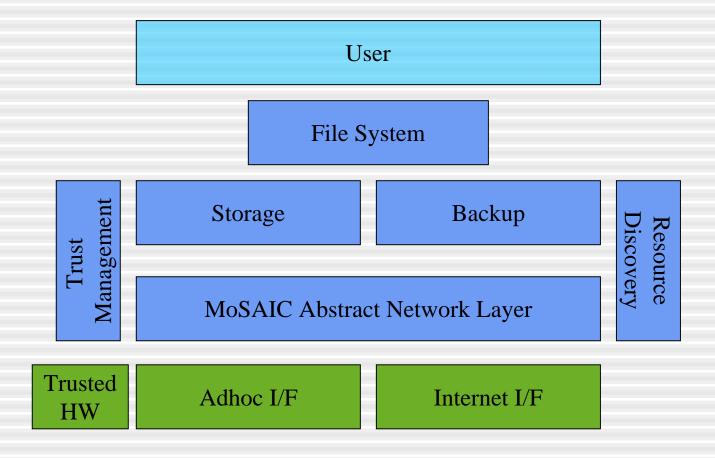
L. Courtès, M.-O. Killijian, D. Powell and M. Roy, "Sauvegarde coopérative entre pairs pour dispositifs mobiles", in *Deuxièmes Journées Francophones: Mobilité et Ubiquité 2005 (UbiMob'05),* (Grenoble,

Current work at LAAS

"Mailbox" model for storing the backup chunks



- Accommodates several restoration modes
 - Push: the contributor sends the chunks back home
 - Internet access, mailbox at the owner's home
 - Pull: the data owner searches for the data when necessary
 - Ad hoc network, mailbox hosted by the contributor
 - Push-pull: storage service as an intermediary
 - Internet access, mailbox hosted by a reliable storage service


Resource discovery

Discovery of MoSAIC devices

- Online
- Creation of ad hoc network
- Active beaconing: low latency vs energy economy
- Discovery of Internet access
 - Be able to backup to mailbox on reliable storage service
- Ad hoc and infrastructure mode at the same time
 - Inter-device cooperation + storage service access
 - One multiplexed network interface
 - Two network interfaces
 - Cooperative access to Internet?

Prototype Device Architecture

Current work at Eurecom

- Trust problems specific to cooperation
 - Will my data be correctly backed up?
 - What replication style is required for reliable backup?
 - When can data backed up for other devices be safely purged?
 - Is this backup request an attempted DoS?
- Establish trust by evaluating quality of cooperation
 - Reputation mechanisms
 - Remuneration mechanisms

Cooperation through credits

- Cooperation encouraged by secure exchange of credits
 - No on-line authority (ad-hoc mode)
 - Partial solution via neutral secure kernels
- How can we guarantee fair exchange (credit ↔ backup)?
 - Solution: optimistic fair exchange protocol
 - Uses TTP if non-cooperation is suspected
 - Secure kernel (representative of the TTP) keeps trace of events
 - Reconciliation by the TTP (when connected)
- NB: detection and punishment of non-cooperation cannot be immediate in a backup service
 - Deferred but direct detection of non-cooperation in pull (ad-hoc) mode
 - Deferred and indirect detection of non-cooperation by reliable storage service in push-pull (intermittent access) mode
 - Link between fair exchange TTP and reliable storage service?

Prototype under development

- Pragmatic choices
 - Secure kernels: Javacards
 - Wireless LAN
- Javacards
 - Storage and exchange of credits
 - Log of backup operations
 - Also backup price "negotiation"

TTP

- Arbitrate conflicts not decidable in distributed fashion (no clock on smartcards)
- "Reimburse" attacked entities
- Validate backup execution and punish attackers
- Connection to TTP for conflict arbitration mitigated when infrastructure connection is necessary for long-term backup
- Current implementation
 - Objective is to validate crypto protocol
 - TTP arbitration not yet managed
- Actively seeking more lightweight solutions

Current work at IRISA

- Simulation model of backup scenario with N devices and 1 infrastructure-based server
- Evaluation of backup device selection policy
 - Favor devices with most remaining energy
 - Favor devices judged to be more likely to reconnect soon to infrastructure
- Initial results
 - MoSAIC inter-device backup strategy considerably better than waiting for infrastructure connection opportunity
 - Current backup device selection policy no better than random choice
- Model to be extended to N device + P infrastructure-based servers

Data restoration issues

- Localization of data on multiple infrastructure-based servers
- Reconciliation of concurrent backups
 - restoration using backup of an old version
 - before completion of backup of more recent version
- Accounting for inter-file dependencies

Conclusion

Scenario for

- Designing new algorithms
- Developing new middleware
- Fault-tolerance
 - Classic faults
 - Devices: crash of devices (owners and contributors), etc.
 - Data: integrity, confidentiality
 - Interaction faults (selfishness, maliciousness)
- New FT-enabling mechanisms
 - Self-carried reputation, virtual money, etc.
 - Opportunistic Internet backup, P2P interactions
- Project is 14 months old, still a lot of interesting things to do