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Security today: The fence approach
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• Seal off your server & clients with a firewall
- Virtualize to remote clients using VPNs

• Simplifies administration (coarse-grained policy)



Limitations of the fence approach
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• Problem: Big fences mean vague security policies
- Prohibit some legitimate behavior (a pain for users)

- Permit some dangerous interactions (insufficiently secure)

• Perimeter security is all-or-nothing
- Breaches or insider attacks can be catastrophic
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Alternative: End-to-end security
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• Shrink the diameter of fences to reduce trust
- Tightly enclose entities making security-relevant decisions

- Fewer weak points (a.k.a. small TCB—longstanding goal)

• Lift unnecessary restrictions on users
- Accommodate functionality that doesn’t fit the fence model



Challenges in achieving end-to-end security

1. Re-factor applications, pushing trust to end points
- Often requires user-visible changes (e.g., to capture intent)

- Example: No secure drop-in replacement for NFS

2. Devise novel crypto algorithms or protocols

3. Engineer practical systems (e.g., release software)
- Test the usability of an idea

- Make a qualitative impact on people’s computing

4. Harden the endpoints



Protecting data
• This talk: Apply approach to protecting data in files

• Help applications that rely on files (most)

• Capitalize on narrow interface of file systems:

Client
Your

read
write

Storage
Infrastructure

- Can specify precise end-to-end security properties

- Can even prove theorems about file system protocols



Outline

• SFS: Trust only the endpoints – your client & server
- Re-factor security to exclude key management [SOSP’99]

- Novel protocols for authentication [NDSS’03,SOSP’03]

- Practical software [USENIX’01,SOSP’01,USENIX’03]

• SFSRO: Eliminate trust in server [OSDI’00/TOCS’02]
- Solves secure content distribution – not general-purpose FS

• SUNDR: True end-to-end file security (bulk of talk)
- Clients check for themselves no unauthorized modifications

- Can detect problems even if attacker completely controls server!
(SUNDR is first file system to achieve this property)

- Even if server colludes with bad users

- Novel protocol [PODC’02] & system [OSDI’04]



SFS



SFS (Self-certifying File System)
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• Shrink the fence down to the client and server
- No need to trust network, DNS, other clients, CAs, etc.

• End-to-end security enables new functionality
- Makes administrative boundaries irrelevant

(e.g., simultaneous access to NYU and Stanford from
anywhere)



“Just adding” security is hard

• Previous file systems didn’t capture users’ intents

• User interface looks like: /net/scs.stanford.edu/dm

• Say my intent is to talk to server in my office

• In big fence world:
- Trust Verisign to identify Stanford

- Trust Stanford to assign this name to my server

• How to move Verisign & Stanford outside the fence?
- Can’t with this interface

- Really want /net/machine-in-my-office/dm



Re-factoring security in SFS

• Problem goes away if client knows server’s public key

File Server
PK1

Attacker
PK2

Client
PK?

• Often can get keys w/o trusting Verisign or Stanford
- E.g., Use passwords to get public keys securely from servers

- But how to express public key to file system client software?

• Idea: Put the public key in the pathname
/sfs/@sfs.stanford.edu,bzcc5hder7cuc86kf6qswyx6yuemnw69/dm/

- Symbolic links save users from seeing these names



SFSRO



Content distribution problem

• People often distribute popular files from mirrors

• But no place to put a fence!



Signing individual files
• One solution: Digitally sign files (e.g., w. PGP)

• But OS distributions consist of many files:'

&

$

%

... freetype-2.1.3-6.i386.rpm

cvs-1.11.2-10.i386.rpm gcc-3.2.2-5.i386.rpm

emacs-21.2-33.i386.rpm gcc-c++-3.2.2-5.i386.rpm

expat-1.95.5-2.i386.rpm gdb-5.3post-0.20021129.18.i386.rpm

flex-2.5.4a-29.i386.rpm glibc-devel-2.3.2-11.9.i386.rpm

fontconfig-2.1-9.i386.rpm ...

• How do you know file versions go together?
- Bad mirror could roll back one file to version with known bug

• How do you know file name corresponds to contents?
- What about directory name? Any context used to interpret file?

• How do you know users will check signature?



SFSRO solution: Signing whole file systems
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• Give publisher a public signature key

• Tie consistent view of whole FS together with one sig

• Read-only FS interface works with all apps (rpm, . . . )



Applying Merkle trees to file systems

• Can’t just sign raw disk image (too big)
- Users may want to download and verify only a few files

• Idea: Index all data & metadata by cryptographic hash

data

data
...

contents

H(data)...

...
/ inode /README inode

H(data)
H(data)

metadata

...

directory

H(inode)

...

...

“README”

- H is a collision-resistant hash function w. fixed-size output

• Publisher signs hash of root inode

• Idea influenced many systems (CFS, Venti, . . . )



SFSRO Protocol

• GETFSINFO () – Get signed hash of root directory

• GETDATA (hash) – Get block with hash value

• Example: To read file /README

- First get signed hash, then walk down tree

GETFSINFO ()

GETDATA (H(/ inode))
...

{H(/ inode), vers.}K−1 ServerClient



SFSRO Protocol
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GETDATA (H(/ inode))



SFSRO Protocol
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SFSRO Protocol
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SFSRO Protocol
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SUNDR



SUNDR: True end-to-end file system security
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• Normally trust file servers to return correct data
- Reject unauthorized requests, properly execute authorized ones

• Should trust only clients of authorized users
- SUNDR can detect misbehavior even if attacker controls server



Motivation: Outsourcing data storage
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• E.g., Sourceforge hosting source repositories

• Attractive target of attack



A worrisome trend

• 5/17/01: Apache development servers compromised
- Password captured by trojaned ssh binary at sourceforge

- The integrity of all source code repositories is being
individually verified by developers. . . - Apache press release

• 11/20/03: Debian administrators discover “root kit”
- at the time the break-ins were discovered. . . it wasn’t possible

to hold [the release] back anymore. – Debian report

• 3/23/04: Gnome server compromise discovered
- We think that the released gnome sources and the . . . repository

are unaffected. . . . we are cautiously hopeful that the
compromise was limited in scope. – Owen Taylor



Traditional file system model

File Server

Client

Client
request, request

response, response

request, request
response, response

secure channel

secure channel

• Clients & servers communicate over secure channels
- Network attackers can’t tamper with requests

• Server can’t prove what requests it received
- Trust server to execute requests properly

- Trust server to return correct responses



SUNDR model

File Server

user v

user u

{read}K−1
v

{write}K−1
u

{write}K−1
u

• Clients send digitally signed requests to server
- This is now possible with sub-millisecond digital signatures

• Server does not execute anything
- Just stores signed requests from clients

- Answers a request with other signed requests, proving result

- Does not know signing keys—cannot forge requests



Danger: Dropping & re-ordering

File Server

user u

user v

u-1, u-2,v-1, u-3,v-2, v-3
u-1, u-2, u-3

v-1, v-2, v-3
u-1, u-2,v-1, v-2, v-3, u-3

• Server can drop signed requests
- E.g., back out critical security fix

• Or show requests to clients in different order
- E.g., overwrite new file with old version

- Can be effectively same as dropping requests



A Fetch-Modify interface

• Need to specify FS correctness condition
- Many file system requests in POSIX

- Far too complex to formalize

• Boil FS interface down to two request types:
- Fetch – Client validates cached file or downloads new data

- Modify – One client makes new file data visible to others

- Can map system calls onto fetch & modify operations:
open → fetch (dir & file), write+close → modify,
truncate → modify, creat → fetch+modify, . . .



File system correctness

• Goal: fetch-modify consistency
- System orders operations reasonably [linearizability]

- A fetch reflects exactly the authorized modifications that
happened before it

- (Basically a formalization of “close-to-open consistency”)

• How close can we get with an untrusted server?
- A: Fork consistency

• Next: 3 progressively more realistic realizations
- Signed logs (enormous bandwidth & FS-wide lock)

- Serialized SUNDR (FS-wide lock)

- SUNDR



Solution 1: Signed logs

modfetch fetch fetch mod fetch fetch
u-1 u-2 v-1 u-3 v-2 u-4 v-3

user u signature user v signature

• Detect reordering by signing entire FS history:

• PREPARE RPC – lock file system, download log
- Client checks signatures on log entries

- Client checks that its previous operation is still in log

• Client plays log to reconstruct FS state

• Client appends new operation, signs new log

• COMMIT RPC – upload signed log, release lock



Signed log security properties

• Server cannot manufacture operations
- Clients check signatures, which server can’t forge

• Server cannot undo operations already revealed
- Clients check their last operation is in current log

• Server cannot re-order signed operations
- Signatures over past history would become invalid



What can a malicious server do?

• Server can mount a fork attack
- Conceal clients’ operations from one another

- But produces divergent logs for different users

• Suppose server doesn’t lock, conceals mod v-2 from u

fetch mod fetch fetch

fetchfetch mod fetch mod fetch

u-1

u-1

u-2

u-2

v-1

v-1

u-3

u-3

u-4

v-2 v-3

fetch
signature

signature

user u

user v

- Either client can detect given any later log of the other



Fork consistency

fetch mod fetch fetch

modfetch fetch fetch fetch fetch mod fetch fetchmodfetch

• User’s views of file system may be forked
- But operations in each branch fetch-modify consistent

- Can’t undetectably re-join forked users

• Best possible consistency w/o on-line trusted party
- Say u logs in, modifies file, logs out

- v logs in but doesn’t see u’s change

- No defense against this attack (w/o on-line trusted party)

- This is the only possible attack on a fork-consistent system



Implications of fork consistency
• Can trivially audit server retroactively

- If you see operation u-n, you were consistent with u (and
transitively anything u saw) at least until u performed u-n

• Exploit any on-line [semi-]trusted parties to
improve consistency

- Clients that communicate get fetch-modify consistency
E.g., two clients on an Ethernet when server “outsourced”

- Pre-arrange for “timestamp” box to update FS every minute

• How to recover from a forking attack?
- This is actually a well-studied problem!

- Ficus, CODA reconcile conflicts after net partition

- Experience: a fork is annoying, but not tragic



Limitations of signed logs

• Signed logs achieve fork consistency. . .

• But signed log scheme hopelessly inefficient
- Each client must download every operation

- Each client must reconstruct entire file system state

- Global lock on file system adds unacceptable overhead

• Systems with logs typically use checkpoints. . .
- Can we sign SFSRO-like snapshots instead of history?



A plan for signing snapshots

u-1
state state state state

state state state
user v

user u

u’s sig

u-2 u-3 u-4

v-1 v-2 v-3

Somehow represent snapshots of each user’s files
in a way that they can be combined. . .

Somehow prevent re-ordering of users’
snapshots. . .



Combining snapshots

• A user’s directory might contain another user’s file
- E.g., root owns /home, dm owns /home/dm

- dm needs to update file w/o having root re-sign anything

- root must sign name “/home/dm” while dm signs contents

data
H(data)

metadata
/home/dm inode

...
...

contents

directory/home inode
H(data)...

...

“dm”

Kdm

signed by
something

Kroot

signed by
something

???



Per-user or -group i-numbers

· · ·

· · ·

· · ·

· · ·

inode

...

H(inode)
i-number

i-table
...

per-user/group

per-user/group

i-handle:
H(i-table)

• Add a level of indirection to SFSRO data structures

• SUNDR directory entry:
〈user/group, i-number〉

file name

• Per-user/group i-tables map i-number → H(inode)

• Hash each i-table to a short i-handle users can sign



A plan for signing snapshots

u-1
state state state state

state state state
user v

user u

u’s sig

u-2 u-3 u-4

v-1 v-2 v-3

Somehow represent snapshots of each user’s files
in a way that they can be combined. . .

Somehow prevent re-ordering of users’
snapshots. . .



Detect re-ordering with version vectors

u-1
state state state state

state state state
user v

user u

u’s sig

u-2 u-3 u-4

v-1 v-2 v-3

• Sign latest version # of every user & group:

version structure: {

i-handle
︷ ︸︸ ︷

u-hu ,

version vector
︷ ︸︸ ︷

u-4 v-2 }K−1
u

• Say U ≤ V iff no user has higher vers. # in U than in V

- Idea: Unordered version structures signify an attack



Solution 2: Serialized SUNDR

• Still no concurrent updates

• Server maintains version structure list or VSL
- Contains latest version structure for each user/group

• To fetch or modify a file, u’s client makes 2 RPCs:
- PREPARE: Locks FS, returns VSL

- Client sanity-checks VSL (ensures it is totally ordered)

- Client calculates & signs new version structure:
{u-hu, u-(nu + 1) v-nv . . .}K−1

u

- If modifying group i-handle, bump group version number:
{u-hu g-hg, u-(nu + 1) v-nv . . . g-(ng + 1) . . .}

K−1
u

- COMMIT: Uploads version struct for new VSL, releases lock



Example: Honest server

user u

user v

u-hu

u-1 v-0

u-1 v-1
v-hv

U1

V1

• Users u and v each start at version 1 (sign U1 & V1)



Example: Honest server

user u

user v

u-hu

v-hv

u-h ′

u

U1 U2

V1

u-2 v-1
after U1, V1

orders U2

Version vector
u-1 v-0

u-1 v-1

• Users u and v each start at version 1 (sign U1 & V1)

• u modifies file f, signs U2 w. new i-handle h ′

u



Example: Honest server

user u

user v

u-hu

u-1 v-0

u-1 v-1
v-hv

u-h ′

u

U1 U2

V1 V2

v-hv

u-2 v-2

u-2 v-1

• Users u and v each start at version 1 (sign U1 & V1)

• u modifies file f, signs U2 w. new i-handle h ′

u

• v fetches f, signs V2 which reflects having seen U2



Example: Malicious server

user u

user v

u-hu

u-1 v-0

u-1 v-1
v-hv

u-h ′

u

U1 U2

V1

u-2 v-1

u-1 v-2
v-hv

V2 version vectors
Unordered

• Suppose server hadn’t shown u’s modification of f to v

• Now U2 6≤ V2 and V2 6≤ U2

- u or v will detect attack upon seeing any future op by other



Limitations of serialized SUNDR
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• Honest server can only allow one operation at a time
- E.g., server must send U2 to v to prevent fork on last slide

- Must wait even if V2 doesn’t observe any changes made in U2

• Without concurrency, get terrible I/O throughput



Solution 3: SUNDR
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• Pre-declare operations in signed update certificates
- u2 = {“In vstruct U2, I intend to change file f to hash h.”}K−1

u

• Server keeps uncommitted update certificates in
Pending Version List or PVL, returns with VSL

• Plan: Have v compute V2 w/o seeing U2 if it sees u2



Danger: Erasing evidence of fork attacks

u-1 v-2

V2

v-hv

user v

user u

u2U1

u-1 v-0
u-hu

v-3
v3

u-2 v-1
u-h ′

u

U2

u-2
f-h

• Let’s revisit attack where v missed modify of f in V2

• Say v then PREPAREs v3 & server returns U1, V2, u2

- Case 1: v3 is fetching a file modified in u2 (read-after-write)

- Case 2: v3 is not observing any changes declared in u2



Case 1: Read-after write conflict
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• Must not show effects of u2 to v’s application
- Recall: when v sees change by u, should guarantee no attack

• Solution: Wait for vstruct w. new FETCHVST RPC
- Example:

U2 = {u-2 v-1} V2 = {u-1 v-2}

v detects attack as U2 6≤ V2 (in VSL) and V2 6≤ U2



Case 2: No read-after-write conflict

u-2 v-1
u-h ′

u

U2

u-1 v-2

V2

v-hv

user v

user u

u2U1

u-1 v-0
u-hu

v-3
v3

v-hv

V3

u-2 v-3

u-2
f-h

• Don’t want to issue/wait for FETCHVST if no conflict

• Problem: v will sign V3 such that U2 ≤ V3

- VSL is once again ordered, evidence of attack erased



Solution: Reflect pending updates in vstructs

u-2 v-1
u-h ′

u

U2

u-1 v-2

V2

v-hv

user v

user u

u2U1

u-1 v-0
u-hu

v-3
v3

v-hv

V3

u-2 v-3
u-2-H(U ′

2)

f-h
u-2

• Vstruct includes hashes of other anticipated vstructs
- Omit i-handles so contents deterministic given order of PVL

• Redefine ≤ to require that hashes match
- E.g., U2 6≤ V3, because V3 contains hash of U ′

2 = {u-2 v-2} 6= U2



Summary of SUNDR properties

• Looks like a file system
- E.g., could use for CVS access to sourceforge

• Only two ways for server to subvert integrity
- Can fork users’ views of file system (recover like Ficus)

- Can throw away your data (recover from backup and/or
untrusted clients’ caches)

• Concurrent operations from different clients



Implementation

syscall xfs

application

client
STORE

DECREF

COMMIT

FETCHVST consistency server

block
server

PREPARE

GETDATA

• Client based on xfs device driver
- xfs part of Arla, a free AFS implementation

- Designed for AFS-like semantics

• Server split into two daemons
- Consistency server handles update certs, version structs

- Block server stores bulk of data

- Can run on same or different machines



Further optimizations

• i-handles really hash plus some deltas
- Amortizes recomputing hash tree over multiple ops

• Include multiple fetches/modifies in one operation

• i-tables are Merkle B+-trees

• Group i-tables add yet another level of indirection
- No need to change group i-table if same user writes

group-writable file twice

• Concurrent modifications of same group i-table
- Possibly many files in a group—shouldn’t serialize access

- Users fold each other’s forthcoming changes into i-table

- Safety comes from careful definition of “≤”



SUNDR: Security and usable performance
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• Benchmark: unpack, build, install emacs 20.7
- 3 GHz Pentium IVs connected by 100 Mbit/sec Ethernet

- Index on 4 15K RPM SCSI disks, logs on 7,200 RPM IDE disks



Related work

• Byzantine Fault Tolerance
- File systems using BFT: BFS, Farsite, OceanStore/Pond

- With 4 replicas, tolerate 1 compromise

• Ordering of events
- Linearizability, version vectors, timeline entanglement,

Smith-Tygar/Reiter-Gong

• Merkle trees
- Merkle signatures, Duchamp, BFS, TDB, CFS [Dabek], PFS,

Venti

• Cryptographic storage
- Swallow, CFS [Blaze], PFS, Sirius, Plutus, Miller



Conclusions

• Don’t “lock down” major infrastructure with fences
- Hard to do uniformly securely for a large infrastructure

- Fences make systems painful to use, impede innovation

• Instead, take the end-to-end approach to security
- Don’t be afraid to redefine your security properties

- Eliminate trust w. novel applications of cryptography

• Three examples of this approach:
- SFS: Shrink fence to exclude key management

- SFSRO: Protect an essentially unfenceable system

- SUNDR: New notion of consistency allows vastly less trust



Stanford Secure Computer Systems Group

http://www.scs.stanford.edu/



Recovery

• Only two kinds of attack to recover from
- Forking attack (previously addressed)

- Server throwing away data

• People already expect disks to die & back up

• With SUNDR, no need to trust the backup!
- Could dump clients’ cache contents to new server!

- Signed version vectors ordered. . . use most recent available
one for each user/group (will be widely cached)

- Everything else indexed by hash. . . simply load up new
server with data in cache—even files you could only read



Malicious users

• Honest server can & must reject bad client RPCs

• Bad server might collude with bad users
- Bad users can write some number of user & group i-handles

- But “consistency” meaningless for bad-user-writable files
(Technically already have permission to modify files between
every pair of fetches by legitimate users)

- And bad server alone can already raise “bad server” alert

• What can server & clients do to files they can’t write?
- Consider subset of operations on files bad users can’t write

- These operations will still be fork consistent



Scalability to multiple clients
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• Benchmark: unpack phase of emacs build



BFS model

Client

Client
File Server

File Server

File Server

H4CK3D

request

• Replicate server 4 times
- Client sends request to replicas

- 3 replicas must agree on order of the operation

- 3 replicas must decide the operation will actually execute

- Client waits for 2 such replicas to return identical responses

- Okay if one replica compromised and/or one replica slow



SSL Convenience vs. Security

• How convenient is a Verisign certificate?
- Need $300 + cooperation from NYU administrators

- Good for credit cards, but shuts out many other people

• How trustworthy is a Verisign certificate?
- In mid-March 2001, VeriSign, Inc., advised Microsoft that on

January 29 and 30, 2001, it issued two. . . [fraudulent]
certificates. . . . The common name assigned to both certificates
is “Microsoft Corporation.”

VeriSign has revoked the certificates. . . . However. . . it is not
possible for any browser’s CRL-checking mechanism to locate
and use the VeriSign CRL.

– Microsoft Security Bulletin MS01-017

• Is this the right level of protection for your data?



Concurrent version structures

• Define collision-resistant hash V for version structs
- E.g., delete i-handle, sort u-n/u-n-h data, run through H

• Version structures now reflect pending updates
{VRS, ui-h, u1-n1 . . . ui-ni . . . , u1-n1-h1 ui-ni-⊥ . . .}K−1

ui

- In addition to u-n pairs, v.s. has a u-n-h triple for each PVL entry

- u,n = user,version of a pending update

- h is V of a version structure, or reserved “self” value ⊥

(u’s nth version structure always contains u-n-⊥)

- Bump user + group #s, fold pending group ops into new i-handles!

• View PVL as containing future version structures
- Each entry is of the form 〈update cert, `〉

- ` is still unsigned version structure with i-handle = ⊥

- Clients compute each u-n-h triple with V(`)



Ordering concurrent version structures
Definition. We say x ≤ y iff:

1. For all users u, x[u] ≤ y[u] (i.e., x ≤ y by old def.), and

2. For each user-version-hash triple u-n-h in y, one of
the following conditions must hold:

(a) x[u] < n (x happened before the pending
operation that u-n-h represents), or

(b) x also contains u-n-h (x happened after the
pending operation and reflects the fact the
operation was pending), or

(c) x contains u-n-⊥ and h = V(x) (x was the
pending operation).



Signature speed

Rabin Esign

1,024 bits 2,048 bits 6,000 bits

Sign 3,656µs 169µs 695µs

Verify 27µs 120µs 575µs

• Major cost of protocol is signatures
- One synchronous, one async signature per fetch/modify

- But can amortize over many concurrent operations

• Using Esign algorithm helps a lot

• Technology is on our side
- Digital signatures are getting faster & more secure

- Speed of light is not changing

- So eventually RTT will dominate public key crypto


