
How to Protect your Data
by Eliminating Trusted Storage Infrastructure

David Mazières
Stanford University

work performed in collaboration with

Jinyuan Li, Maxwell Krohn, Dennis Shasha,
Siddhartha Annapureddy, Benjie Chen, Frank Dabek, Yevgeniy Dodis, Michael Freedman, Kevin Fu,

Daniel Giffin, Frans Kaashoek, Michael Kaminsky, Petar Maymounkov, Robert Morris,

Athicha Muthitacheroen, Antonio Nicolosi, George Savvides, Emmett Witchel, Nickolai Zeldovich



Security today: The fence approach

home

Client

DNS server

File Server

Client

Red=Trusted
Stanford

Internet

• Seal off your server & clients with a firewall
- Virtualize to remote clients using VPNs

• Simplifies administration (coarse-grained policy)



Limitations of the fence approach

home

Client

DNS server

File Server

Client

X

Stanford

Internet

• Problem: Big fences mean vague security policies
- Prohibit some legitimate behavior (a pain for users)

- Permit some dangerous interactions (insufficiently secure)

• Perimeter security is all-or-nothing
- Breaches or insider attacks can be catastrophic



Limitations of the fence approach

home

X
H4CK3D

H4CK3D

H4CK3D

H4CK3D

Stanford

Internet

• Problem: Big fences mean vague security policies
- Prohibit some legitimate behavior (a pain for users)

- Permit some dangerous interactions (insufficiently secure)

• Perimeter security is all-or-nothing
- Breaches or insider attacks can be catastrophic



Alternative: End-to-end security

Client
Your

Client

home

File Server

H4CK3D

Stanford

Internet

• Shrink the diameter of fences to reduce trust
- Tightly enclose entities making security-relevant decisions

- Fewer weak points (a.k.a. small TCB—longstanding goal)

• Lift unnecessary restrictions on users
- Accommodate functionality that doesn’t fit the fence model



Challenges in achieving end-to-end security

1. Re-factor applications, pushing trust to end points
- Often requires user-visible changes (e.g., to capture intent)

- Example: No secure drop-in replacement for NFS

2. Devise novel crypto algorithms or protocols

3. Engineer practical systems (e.g., release software)
- Test the usability of an idea

- Make a qualitative impact on people’s computing

4. Harden the endpoints



Protecting data
• This talk: Apply approach to protecting data in files

• Help applications that rely on files (most)

• Capitalize on narrow interface of file systems:

Client
Your

read
write

Storage
Infrastructure

- Can specify precise end-to-end security properties

- Can even prove theorems about file system protocols



Outline

• SFS: Trust only the endpoints – your client & server
- Re-factor security to exclude key management [SOSP’99]

- Novel protocols for authentication [NDSS’03,SOSP’03]

- Practical software [USENIX’01,SOSP’01,USENIX’03]

• SFSRO: Eliminate trust in server [OSDI’00/TOCS’02]
- Solves secure content distribution – not general-purpose FS

• SUNDR: True end-to-end file security (bulk of talk)
- Clients check for themselves no unauthorized modifications

- Can detect problems even if attacker completely controls server!
(SUNDR is first file system to achieve this property)

- Even if server colludes with bad users

- Novel protocol [PODC’02] & system [OSDI’04]



SFS



SFS (Self-certifying File System)

File Server

Client

Client
Your

File Server

Client

Internet NYU

Stanford

• Shrink the fence down to the client and server
- No need to trust network, DNS, other clients, CAs, etc.

• End-to-end security enables new functionality
- Makes administrative boundaries irrelevant

(e.g., simultaneous access to NYU and Stanford from
anywhere)



“Just adding” security is hard

• Previous file systems didn’t capture users’ intents

• User interface looks like: /net/scs.stanford.edu/dm

• Say my intent is to talk to server in my office

• In big fence world:
- Trust Verisign to identify Stanford

- Trust Stanford to assign this name to my server

• How to move Verisign & Stanford outside the fence?
- Can’t with this interface

- Really want /net/machine-in-my-office/dm



Re-factoring security in SFS

• Problem goes away if client knows server’s public key

File Server
PK1

Attacker
PK2

Client
PK?

• Often can get keys w/o trusting Verisign or Stanford
- E.g., Use passwords to get public keys securely from servers

- But how to express public key to file system client software?

• Idea: Put the public key in the pathname
/sfs/@sfs.stanford.edu,bzcc5hder7cuc86kf6qswyx6yuemnw69/dm/

- Symbolic links save users from seeing these names



SFSRO



Content distribution problem

• People often distribute popular files from mirrors

• But no place to put a fence!



Signing individual files
• One solution: Digitally sign files (e.g., w. PGP)

• But OS distributions consist of many files:'

&

$

%

... freetype-2.1.3-6.i386.rpm

cvs-1.11.2-10.i386.rpm gcc-3.2.2-5.i386.rpm

emacs-21.2-33.i386.rpm gcc-c++-3.2.2-5.i386.rpm

expat-1.95.5-2.i386.rpm gdb-5.3post-0.20021129.18.i386.rpm

flex-2.5.4a-29.i386.rpm glibc-devel-2.3.2-11.9.i386.rpm

fontconfig-2.1-9.i386.rpm ...

• How do you know file versions go together?
- Bad mirror could roll back one file to version with known bug

• How do you know file name corresponds to contents?
- What about directory name? Any context used to interpret file?

• How do you know users will check signature?



SFSRO solution: Signing whole file systems

Publisher

Client Client

Client
Your File Server

File ServerFile Server

H4X0R

Internet

Stanford

• Give publisher a public signature key

• Tie consistent view of whole FS together with one sig

• Read-only FS interface works with all apps (rpm, . . . )



Applying Merkle trees to file systems

• Can’t just sign raw disk image (too big)
- Users may want to download and verify only a few files

• Idea: Index all data & metadata by cryptographic hash

data

data
...

contents

H(data)...

...
/ inode /README inode

H(data)
H(data)

metadata

...

directory

H(inode)

...

...

“README”

- H is a collision-resistant hash function w. fixed-size output

• Publisher signs hash of root inode

• Idea influenced many systems (CFS, Venti, . . . )



SFSRO Protocol

• GETFSINFO () – Get signed hash of root directory

• GETDATA (hash) – Get block with hash value

• Example: To read file /README

- First get signed hash, then walk down tree

GETFSINFO ()

GETDATA (H(/ inode))
...

{H(/ inode), vers.}K−1 ServerClient



SFSRO Protocol

data

data
...

contents

H(data)...

...
/ inode /README inode

H(data)
H(data)

metadata

...

directory

H(inode)

...

...

“README”

Client Server/ inode
GETDATA (H(/ inode))



SFSRO Protocol

data

data
...

contents

H(data)...

...
/ inode /README inode

H(data)
H(data)

metadata

...

directory

H(inode)

...

...

“README”

Client Server
GETDATA (H(data))

directory



SFSRO Protocol

data

data
...

contents

H(data)...

...
/ inode /README inode

H(data)
H(data)

metadata

...

directory

H(inode)

...

...

“README”

Client Server
GETDATA (H(inode))

/README inode



SFSRO Protocol

data

data

H(data)...

...
/ inode /README inode

H(data)
H(data)

metadata

...

directory

H(inode)

...

...

“README”

Client Server
GETDATA (H(data))

data

...

contents



SUNDR



SUNDR: True end-to-end file system security

Client

Client Client

Client
Your

File Server

H4X0RInternet
Stanford

• Normally trust file servers to return correct data
- Reject unauthorized requests, properly execute authorized ones

• Should trust only clients of authorized users
- SUNDR can detect misbehavior even if attacker controls server



Motivation: Outsourcing data storage

Client

Client

Client
Client

File ServerInternet

Sourceforge

• E.g., Sourceforge hosting source repositories

• Attractive target of attack



A worrisome trend

• 5/17/01: Apache development servers compromised
- Password captured by trojaned ssh binary at sourceforge

- The integrity of all source code repositories is being
individually verified by developers. . . - Apache press release

• 11/20/03: Debian administrators discover “root kit”
- at the time the break-ins were discovered. . . it wasn’t possible

to hold [the release] back anymore. – Debian report

• 3/23/04: Gnome server compromise discovered
- We think that the released gnome sources and the . . . repository

are unaffected. . . . we are cautiously hopeful that the
compromise was limited in scope. – Owen Taylor



Traditional file system model

File Server

Client

Client
request, request

response, response

request, request
response, response

secure channel

secure channel

• Clients & servers communicate over secure channels
- Network attackers can’t tamper with requests

• Server can’t prove what requests it received
- Trust server to execute requests properly

- Trust server to return correct responses



SUNDR model

File Server

user v

user u

{read}K−1
v

{write}K−1
u

{write}K−1
u

• Clients send digitally signed requests to server
- This is now possible with sub-millisecond digital signatures

• Server does not execute anything
- Just stores signed requests from clients

- Answers a request with other signed requests, proving result

- Does not know signing keys—cannot forge requests



Danger: Dropping & re-ordering

File Server

user u

user v

u-1, u-2,v-1, u-3,v-2, v-3
u-1, u-2, u-3

v-1, v-2, v-3
u-1, u-2,v-1, v-2, v-3, u-3

• Server can drop signed requests
- E.g., back out critical security fix

• Or show requests to clients in different order
- E.g., overwrite new file with old version

- Can be effectively same as dropping requests



A Fetch-Modify interface

• Need to specify FS correctness condition
- Many file system requests in POSIX

- Far too complex to formalize

• Boil FS interface down to two request types:
- Fetch – Client validates cached file or downloads new data

- Modify – One client makes new file data visible to others

- Can map system calls onto fetch & modify operations:
open → fetch (dir & file), write+close → modify,
truncate → modify, creat → fetch+modify, . . .



File system correctness

• Goal: fetch-modify consistency
- System orders operations reasonably [linearizability]

- A fetch reflects exactly the authorized modifications that
happened before it

- (Basically a formalization of “close-to-open consistency”)

• How close can we get with an untrusted server?
- A: Fork consistency

• Next: 3 progressively more realistic realizations
- Signed logs (enormous bandwidth & FS-wide lock)

- Serialized SUNDR (FS-wide lock)

- SUNDR



Solution 1: Signed logs

modfetch fetch fetch mod fetch fetch
u-1 u-2 v-1 u-3 v-2 u-4 v-3

user u signature user v signature

• Detect reordering by signing entire FS history:

• PREPARE RPC – lock file system, download log
- Client checks signatures on log entries

- Client checks that its previous operation is still in log

• Client plays log to reconstruct FS state

• Client appends new operation, signs new log

• COMMIT RPC – upload signed log, release lock



Signed log security properties

• Server cannot manufacture operations
- Clients check signatures, which server can’t forge

• Server cannot undo operations already revealed
- Clients check their last operation is in current log

• Server cannot re-order signed operations
- Signatures over past history would become invalid



What can a malicious server do?

• Server can mount a fork attack
- Conceal clients’ operations from one another

- But produces divergent logs for different users

• Suppose server doesn’t lock, conceals mod v-2 from u

fetch mod fetch fetch

fetchfetch mod fetch mod fetch

u-1

u-1

u-2

u-2

v-1

v-1

u-3

u-3

u-4

v-2 v-3

fetch
signature

signature

user u

user v

- Either client can detect given any later log of the other



Fork consistency

fetch mod fetch fetch

modfetch fetch fetch fetch fetch mod fetch fetchmodfetch

• User’s views of file system may be forked
- But operations in each branch fetch-modify consistent

- Can’t undetectably re-join forked users

• Best possible consistency w/o on-line trusted party
- Say u logs in, modifies file, logs out

- v logs in but doesn’t see u’s change

- No defense against this attack (w/o on-line trusted party)

- This is the only possible attack on a fork-consistent system



Implications of fork consistency
• Can trivially audit server retroactively

- If you see operation u-n, you were consistent with u (and
transitively anything u saw) at least until u performed u-n

• Exploit any on-line [semi-]trusted parties to
improve consistency

- Clients that communicate get fetch-modify consistency
E.g., two clients on an Ethernet when server “outsourced”

- Pre-arrange for “timestamp” box to update FS every minute

• How to recover from a forking attack?
- This is actually a well-studied problem!

- Ficus, CODA reconcile conflicts after net partition

- Experience: a fork is annoying, but not tragic



Limitations of signed logs

• Signed logs achieve fork consistency. . .

• But signed log scheme hopelessly inefficient
- Each client must download every operation

- Each client must reconstruct entire file system state

- Global lock on file system adds unacceptable overhead

• Systems with logs typically use checkpoints. . .
- Can we sign SFSRO-like snapshots instead of history?



A plan for signing snapshots

u-1
state state state state

state state state
user v

user u

u’s sig

u-2 u-3 u-4

v-1 v-2 v-3

Somehow represent snapshots of each user’s files
in a way that they can be combined. . .

Somehow prevent re-ordering of users’
snapshots. . .



Combining snapshots

• A user’s directory might contain another user’s file
- E.g., root owns /home, dm owns /home/dm

- dm needs to update file w/o having root re-sign anything

- root must sign name “/home/dm” while dm signs contents

data
H(data)

metadata
/home/dm inode

...
...

contents

directory/home inode
H(data)...

...

“dm”

Kdm

signed by
something

Kroot

signed by
something

???



Per-user or -group i-numbers

· · ·

· · ·

· · ·

· · ·

inode

...

H(inode)
i-number

i-table
...

per-user/group

per-user/group

i-handle:
H(i-table)

• Add a level of indirection to SFSRO data structures

• SUNDR directory entry:
〈user/group, i-number〉

file name

• Per-user/group i-tables map i-number → H(inode)

• Hash each i-table to a short i-handle users can sign



A plan for signing snapshots

u-1
state state state state

state state state
user v

user u

u’s sig

u-2 u-3 u-4

v-1 v-2 v-3

Somehow represent snapshots of each user’s files
in a way that they can be combined. . .

Somehow prevent re-ordering of users’
snapshots. . .



Detect re-ordering with version vectors

u-1
state state state state

state state state
user v

user u

u’s sig

u-2 u-3 u-4

v-1 v-2 v-3

• Sign latest version # of every user & group:

version structure: {

i-handle
︷ ︸︸ ︷

u-hu ,

version vector
︷ ︸︸ ︷

u-4 v-2 }K−1
u

• Say U ≤ V iff no user has higher vers. # in U than in V

- Idea: Unordered version structures signify an attack



Solution 2: Serialized SUNDR

• Still no concurrent updates

• Server maintains version structure list or VSL
- Contains latest version structure for each user/group

• To fetch or modify a file, u’s client makes 2 RPCs:
- PREPARE: Locks FS, returns VSL

- Client sanity-checks VSL (ensures it is totally ordered)

- Client calculates & signs new version structure:
{u-hu, u-(nu + 1) v-nv . . .}K−1

u

- If modifying group i-handle, bump group version number:
{u-hu g-hg, u-(nu + 1) v-nv . . . g-(ng + 1) . . .}

K−1
u

- COMMIT: Uploads version struct for new VSL, releases lock



Example: Honest server

user u

user v

u-hu

u-1 v-0

u-1 v-1
v-hv

U1

V1

• Users u and v each start at version 1 (sign U1 & V1)



Example: Honest server

user u

user v

u-hu

v-hv

u-h ′

u

U1 U2

V1

u-2 v-1
after U1, V1

orders U2

Version vector
u-1 v-0

u-1 v-1

• Users u and v each start at version 1 (sign U1 & V1)

• u modifies file f, signs U2 w. new i-handle h ′

u



Example: Honest server

user u

user v

u-hu

u-1 v-0

u-1 v-1
v-hv

u-h ′

u

U1 U2

V1 V2

v-hv

u-2 v-2

u-2 v-1

• Users u and v each start at version 1 (sign U1 & V1)

• u modifies file f, signs U2 w. new i-handle h ′

u

• v fetches f, signs V2 which reflects having seen U2



Example: Malicious server

user u

user v

u-hu

u-1 v-0

u-1 v-1
v-hv

u-h ′

u

U1 U2

V1

u-2 v-1

u-1 v-2
v-hv

V2 version vectors
Unordered

• Suppose server hadn’t shown u’s modification of f to v

• Now U2 6≤ V2 and V2 6≤ U2

- u or v will detect attack upon seeing any future op by other



Limitations of serialized SUNDR

BAD

V
SL

V
SL

PR
E

PA
R

E

C
O

M
M

IT

C
O

M
M

IT

PR
E

PA
R

E

u’s client

server

v’s client

U
2

V
2

U
2 , V

1

U
1
, V

1

• Honest server can only allow one operation at a time
- E.g., server must send U2 to v to prevent fork on last slide

- Must wait even if V2 doesn’t observe any changes made in U2

• Without concurrency, get terrible I/O throughput



Solution 3: SUNDR

V
SL

, P
V

L

V
SL

, PV
L

C
O

M
M

IT

PREPA
RE

PR
EP

A
RE

C
O

M
M

IT

U
2

U
1
, V

1u
2

v 2 V
2

U
1 , V

1 , u
2

u’s client

server

v’s client

• Pre-declare operations in signed update certificates
- u2 = {“In vstruct U2, I intend to change file f to hash h.”}K−1

u

• Server keeps uncommitted update certificates in
Pending Version List or PVL, returns with VSL

• Plan: Have v compute V2 w/o seeing U2 if it sees u2



Danger: Erasing evidence of fork attacks

u-1 v-2

V2

v-hv

user v

user u

u2U1

u-1 v-0
u-hu

v-3
v3

u-2 v-1
u-h ′

u

U2

u-2
f-h

• Let’s revisit attack where v missed modify of f in V2

• Say v then PREPAREs v3 & server returns U1, V2, u2

- Case 1: v3 is fetching a file modified in u2 (read-after-write)

- Case 2: v3 is not observing any changes declared in u2



Case 1: Read-after write conflict

V
SL

, PV
L

FE
TC

H
V

ST

C
O

M
M

IT

V
SL

PREPA
RE

C
O

M
M

IT
PR

EP
A

RE

u’s client

U
1 , V

2 , u
2

V
3

v’s client

server

U
2

U
1
, V

1u
2

v 3

U
2

• Must not show effects of u2 to v’s application
- Recall: when v sees change by u, should guarantee no attack

• Solution: Wait for vstruct w. new FETCHVST RPC
- Example:

U2 = {u-2 v-1} V2 = {u-1 v-2}

v detects attack as U2 6≤ V2 (in VSL) and V2 6≤ U2



Case 2: No read-after-write conflict

u-2 v-1
u-h ′

u

U2

u-1 v-2

V2

v-hv

user v

user u

u2U1

u-1 v-0
u-hu

v-3
v3

v-hv

V3

u-2 v-3

u-2
f-h

• Don’t want to issue/wait for FETCHVST if no conflict

• Problem: v will sign V3 such that U2 ≤ V3

- VSL is once again ordered, evidence of attack erased



Solution: Reflect pending updates in vstructs

u-2 v-1
u-h ′

u

U2

u-1 v-2

V2

v-hv

user v

user u

u2U1

u-1 v-0
u-hu

v-3
v3

v-hv

V3

u-2 v-3
u-2-H(U ′

2)

f-h
u-2

• Vstruct includes hashes of other anticipated vstructs
- Omit i-handles so contents deterministic given order of PVL

• Redefine ≤ to require that hashes match
- E.g., U2 6≤ V3, because V3 contains hash of U ′

2 = {u-2 v-2} 6= U2



Summary of SUNDR properties

• Looks like a file system
- E.g., could use for CVS access to sourceforge

• Only two ways for server to subvert integrity
- Can fork users’ views of file system (recover like Ficus)

- Can throw away your data (recover from backup and/or
untrusted clients’ caches)

• Concurrent operations from different clients



Implementation

syscall xfs

application

client
STORE

DECREF

COMMIT

FETCHVST consistency server

block
server

PREPARE

GETDATA

• Client based on xfs device driver
- xfs part of Arla, a free AFS implementation

- Designed for AFS-like semantics

• Server split into two daemons
- Consistency server handles update certs, version structs

- Block server stores bulk of data

- Can run on same or different machines



Further optimizations

• i-handles really hash plus some deltas
- Amortizes recomputing hash tree over multiple ops

• Include multiple fetches/modifies in one operation

• i-tables are Merkle B+-trees

• Group i-tables add yet another level of indirection
- No need to change group i-table if same user writes

group-writable file twice

• Concurrent modifications of same group i-table
- Possibly many files in a group—shouldn’t serialize access

- Users fold each other’s forthcoming changes into i-table

- Safety comes from careful definition of “≤”



SUNDR: Security and usable performance

untar config make install clean
0

20

40

60

R
un

 T
im

e 
(s

)
NFS2
NFS3
SUNDR 
SUNDR / NVRAM

• Benchmark: unpack, build, install emacs 20.7
- 3 GHz Pentium IVs connected by 100 Mbit/sec Ethernet

- Index on 4 15K RPM SCSI disks, logs on 7,200 RPM IDE disks



Related work

• Byzantine Fault Tolerance
- File systems using BFT: BFS, Farsite, OceanStore/Pond

- With 4 replicas, tolerate 1 compromise

• Ordering of events
- Linearizability, version vectors, timeline entanglement,

Smith-Tygar/Reiter-Gong

• Merkle trees
- Merkle signatures, Duchamp, BFS, TDB, CFS [Dabek], PFS,

Venti

• Cryptographic storage
- Swallow, CFS [Blaze], PFS, Sirius, Plutus, Miller



Conclusions

• Don’t “lock down” major infrastructure with fences
- Hard to do uniformly securely for a large infrastructure

- Fences make systems painful to use, impede innovation

• Instead, take the end-to-end approach to security
- Don’t be afraid to redefine your security properties

- Eliminate trust w. novel applications of cryptography

• Three examples of this approach:
- SFS: Shrink fence to exclude key management

- SFSRO: Protect an essentially unfenceable system

- SUNDR: New notion of consistency allows vastly less trust



Stanford Secure Computer Systems Group

http://www.scs.stanford.edu/



Recovery

• Only two kinds of attack to recover from
- Forking attack (previously addressed)

- Server throwing away data

• People already expect disks to die & back up

• With SUNDR, no need to trust the backup!
- Could dump clients’ cache contents to new server!

- Signed version vectors ordered. . . use most recent available
one for each user/group (will be widely cached)

- Everything else indexed by hash. . . simply load up new
server with data in cache—even files you could only read



Malicious users

• Honest server can & must reject bad client RPCs

• Bad server might collude with bad users
- Bad users can write some number of user & group i-handles

- But “consistency” meaningless for bad-user-writable files
(Technically already have permission to modify files between
every pair of fetches by legitimate users)

- And bad server alone can already raise “bad server” alert

• What can server & clients do to files they can’t write?
- Consider subset of operations on files bad users can’t write

- These operations will still be fork consistent



Scalability to multiple clients

1 2 31 2 3

Concurrent Clients

20

40

60

80

100
A

ve
ra

ge
 R

un
 T

im
e 

(s
)

NFS2
SUNDR 
NFS3
SUNDR / NVRAM

• Benchmark: unpack phase of emacs build



BFS model

Client

Client
File Server

File Server

File Server

H4CK3D

request

• Replicate server 4 times
- Client sends request to replicas

- 3 replicas must agree on order of the operation

- 3 replicas must decide the operation will actually execute

- Client waits for 2 such replicas to return identical responses

- Okay if one replica compromised and/or one replica slow



SSL Convenience vs. Security

• How convenient is a Verisign certificate?
- Need $300 + cooperation from NYU administrators

- Good for credit cards, but shuts out many other people

• How trustworthy is a Verisign certificate?
- In mid-March 2001, VeriSign, Inc., advised Microsoft that on

January 29 and 30, 2001, it issued two. . . [fraudulent]
certificates. . . . The common name assigned to both certificates
is “Microsoft Corporation.”

VeriSign has revoked the certificates. . . . However. . . it is not
possible for any browser’s CRL-checking mechanism to locate
and use the VeriSign CRL.

– Microsoft Security Bulletin MS01-017

• Is this the right level of protection for your data?



Concurrent version structures

• Define collision-resistant hash V for version structs
- E.g., delete i-handle, sort u-n/u-n-h data, run through H

• Version structures now reflect pending updates
{VRS, ui-h, u1-n1 . . . ui-ni . . . , u1-n1-h1 ui-ni-⊥ . . .}K−1

ui

- In addition to u-n pairs, v.s. has a u-n-h triple for each PVL entry

- u,n = user,version of a pending update

- h is V of a version structure, or reserved “self” value ⊥

(u’s nth version structure always contains u-n-⊥)

- Bump user + group #s, fold pending group ops into new i-handles!

• View PVL as containing future version structures
- Each entry is of the form 〈update cert, `〉

- ` is still unsigned version structure with i-handle = ⊥

- Clients compute each u-n-h triple with V(`)



Ordering concurrent version structures
Definition. We say x ≤ y iff:

1. For all users u, x[u] ≤ y[u] (i.e., x ≤ y by old def.), and

2. For each user-version-hash triple u-n-h in y, one of
the following conditions must hold:

(a) x[u] < n (x happened before the pending
operation that u-n-h represents), or

(b) x also contains u-n-h (x happened after the
pending operation and reflects the fact the
operation was pending), or

(c) x contains u-n-⊥ and h = V(x) (x was the
pending operation).



Signature speed

Rabin Esign

1,024 bits 2,048 bits 6,000 bits

Sign 3,656µs 169µs 695µs

Verify 27µs 120µs 575µs

• Major cost of protocol is signatures
- One synchronous, one async signature per fetch/modify

- But can amortize over many concurrent operations

• Using Esign algorithm helps a lot

• Technology is on our side
- Digital signatures are getting faster & more secure

- Speed of light is not changing

- So eventually RTT will dominate public key crypto


